音频分析仪基本参数

基本参数测量
音频测量中需要测量的基本参数主要有电压频率、信噪比。电压测试可以分为均方根电压(RMS)、平均电压和峰值电压等几种。
频率是音频测量中最基本的参数之一。通常利用高频精密时钟作为基准来测量信号频率测量频率时,在一个限定的时间内的输入信号和基准时钟同时计数,然后将两者的计数值比较后乘以基准时钟的频率就得到信号频率。随着微处理芯片的运算速度的提高,信号频率也可以利用快速傅立叶变换通过软件计算得到。
信噪比是音频设备的基本性能指标,是信号的有效电压噪声电压的比值。信噪比的计算公式为:
2-1
在实际测量中,为方便起见,通常用带有噪声信号电压代替信号电压计算信噪比。
时域分析
时域分析通常是将某种测试信号输入待测音频设备,观察设备输出信号时域波形来评定设备的相关性能。最常用的时域分析测试信号有正弦信号、方波信号、阶跃信号及单音突变信号等。例如将正弦信号输入设备,观察输出信号时域波形失真就是一种时域分析方法。
方波分析具有良好的突变性及周期性,通过观察设备对方波信号的输出信号波形能够很好的检测设备的各项性能,因此方波信号成为最常用的时域分析信号
阶跃信号分析比较简单,主要用来检测音频设备对于信号突变的响应灵敏度。阶跃信号分析的参数通常两个,就是阶跃响应信号的上升时间和脉冲宽度。上升时间越小,设备对于信号突变的响应越灵敏,瞬态特性越好;脉宽越小,设备的阻尼特性越好,系统越稳定。
正弦信号在某个时刻峰值突然升高,形成突变,就是单音突变信号。由于单音突变信号能量集中在一个很窄的频率范围,因此常用单音突变信号检测音频设备在某个特定频率的响应情况。单音突变信号的主要用途是快速判定某些音频设备,例如扬声器的阻尼特性等。
频域分析
频域分析是音频分析的重要内容,频域分析的主要依据是频率响应特性曲线图。前面提到的正弦检测、脉冲检测及最大长度序列信号检测都能够得到设备的频率响应。频率响应曲线图反映了音频设备在整个音频范围内的频率响应的分布情况。一般来说曲线峰值处的频率成分,回放声压大、声压强;曲线谷底处频率成分声压小、声音弱。若波峰和波谷起伏太大,则会造成较严重的频率失真。
时频分析
时频特性描述了音频设备在时间轴上随着时间的变化其频域特性的变化情况。时频特性不仅在频率的变化过程中描述了音频设备的响应状态,而且还在时间的变化过程中描述了音频设备的响应状态,也就是从三维的角度全面地描述了音频设备的响应特性。对于放音设备而言,主观听感的评述,如低音是否干净,背景是否清晰,层次是否分明,音场的深浅等均与音频设备的时频特性均有密切关系。音频设备的时频特性是客观评价音频设备性能优劣的一个很重要的方面。
失真分析
音频设备的失真包括谐波失真、互调失真、相位失真及瞬态失真等几类。音频测量中最重要的是谐波失真,谐波失真,简单地说就是声音信号经音频设备重放后多出来的额外的谐波成分。从听众的角度看,不同的发声物体所发出的声音是由不同的基波和谐波构成的,听众可以根据声音的特性分辨出发声的物体。如果功率放大器将某种乐器所发出的乐音(乐音由基波和谐波组成)放大,经扬声器放音后,对基波和各次谐波的波形形状、幅值和相位均能无失真的重现出来,则可以认为是高质量的放音;否则,扬声器所放出的声音听起来烦躁、别扭,则谐波失真已经达到无法忍受,甚至使人无法分辨发声乐器的种类。因此,谐波失真是音频设备的重要性能指标。
谐波失真的测量方法有两种,一种是以正弦信号输入待测设备,然后分析设备响应信号频率成分,可以得到谐波失真。另一种更简单的测量方法是首先利用带阻滤波器滤除响应信号中的基频成分,然后直接测量剩余信号电压,将其与原响应信号作比较,就可以得到谐波失真。显然第二种方法得到的谐波失真是THD+N,由于采用了信号的总电压值代替了基频分量电压值,因此得到的谐波失真比实际值偏小,且实际的谐波失真越大,误差越大。
在实际的音频测量时,通常在一定的频率范围内选取若干个频率点,分别测量出各点的谐波失真,然后将各谐波失真数值以频率为横坐标连成一条曲线,称为谐波失真曲线。

温度计 红外线测温仪 温湿度表 风速计 照度计 紫外线强度计
可燃性气体检测仪 氧气分析仪 烟气分析仪 二氧化碳分析仪 万用表 示波器
电池测试仪 电力分析仪 电缆故障定位仪 钳表 硬度计 场强仪
高斯计 酸度计 工业工具 噪音计 亮度计 电阻测试仪
记录仪 汽车尾气分析仪(烟度计) 套装组合工具 尘埃粒子计数器
发布人:众宇旺仪器 发布时间:2013年12月16日 已被浏览 1054 次 〖 打印本文